A Comprehensive Guide to Ethernet, Its Types, and Media Converters

With increasing business expansions, and the creation of humongous amounts of data, the demand for high speed and seamless connectivity is ever increasing. The legacy networks are falling short in terms of the speed and size of data being transferred as also in terms of geographical distance of transmission. Hence, fiber optics is increasingly blended by businesses into their legacy networks. This requires various devices such as Ethernet media converters, switches, and more. Additionally, there are various types of Ethernet networks based on the speed and transmission rate they offer. Upgrading to a higher version of Ethernet network may also serve the purpose for some businesses. This post discusses about various such Ethernet network types, fiber optics, use of Ethernet media converters, and more.

Ethernet Networks and Media Converters

What is Ethernet?

Ethernet is a standard communication protocol used to create local area networks, transmitting and receiving data through cables. It is an IEEE standard that has evolved over the years, with newer versions and standards being developed to meet increasing demands for speed and bandwidth. Ethernet facilitates direct internet connectivity to a device and is often used in homes and small businesses with only a few connected devices, such as a computer and printer. It is a reliable and fast source of internet connectivity, making it a popular choice for small offices, campuses, and similar settings.

What is an Ethernet Network?

Ethernet network refers to a type of computer network that uses Ethernet communication protocol to connect devices, such as computers, printers, and servers within a local area network (LAN). It allows the devices to communicate with each other and share resources such as files, documents, and internet access. Ethernet networks can be either wired or wireless and use various topologies such as star, bus, ring, and others to ensure smooth communication and data transfer between the devices in the network.

What Are the Various Types of Ethernet Networks?

Fiber optic media converters connect an Ethernet device with CAT5/CAT6 copper cables to a fiber optic cable. An Ethernet network usually is active in a 10-km periphery. This extension to fiber optic cable significantly increases the distance covered by the network. Here are some types of Ethernet in computer networks:

  • Fast Ethernet: As the term suggests, this is quite a high-speed internet, and can transmit or receive data at about 100 Mbps. This type of network is usually supported by a twisted pair or CAT5 cable. If a laptop, camera, or any other device is connected to a network, they operate at 10/100Base Ethernet and 100Base on the fiber side of the link.
  • Gigabit Ethernet: This type of network transfers data at an even higher speed of about 1000 Mbps or 1Gbps. Gigabit speed is an upgrade from Fast Ethernet which is slowly being phased out. In this type of network, all the four pairs in the twisted pair cable contribute to the data transfer speed. This network type finds a large application in video calling systems which use CAT5e or other advanced cables. For extended networks, the distance of up to 500m, 1000Base SX fiber cables may be used for multimode, as well as 1000Base LX for single mode systems. VERSITRON manufactures Gigabit Ethernet Media Converters that can handle 10/100/1000Base speeds on the Ethernet side and 1000Base Gigabit speed on the fiber side by using Fiber SFP modules.
  • 10-Gigabit Ethernet: This is an even more advanced and high speed network type with a data transfer rate of 10 Gigabit/second. It is supported by CAT6a or CAT7 twisted pair cables, as well as fiber optic cables. By using a fiber optic cable, this network area can be extended up to around 10,000 meters.
  • Switch Ethernet: This type of network requires a switch or hub. Also, instead of a twisted pair cable, a normal network cable is used in this case. Fiber Optic Network switches are used for data transfer from one device to the other, without interrupting any other devices in the network.

What is an Ethernet Media Converter?

An Ethernet media converter is a device that is able to support communications between two different types of network media or two dissimilar networks. This is ideal for blended networks such as legacy copper cable network with fiber optics. This device interprets and converts electrical signals to light pulses and vice versa and sends them over a cable. Any blended network needs at least two media converters installed at two ends. It has two types of ports – RJ45 port for connecting to copper cable connectors and SFP port for connecting to fiber optic cable connector.

What Are the Types of Ethernet Media Converters?

These types are classified on the basis of their configuration, data rate, and speed. Here are some types of Ethernet media converters.

  • 10/100Base Ethernet media converters: These are double duty connectors that convert 10/100Base Fast Ethernet UTP electrical signal into light signals, and are suited for single mode as well as multimode networks.
  • Gigabit Ethernet media converter with fiber:This type converts 10/100Base or 1000Base Ethernet to 1000Base Gigabit speeds over fiber. These are 10/100/1000 media converters for single as well as multimode networks that support a distance of up to 100km. They are compliant with IEEE 802.3, 802.3ab, 802.3u, and 802.3z protocols.
  • 10/100Base-TX to 10/100Base-FX Ethernet media converters: This type converts Ethernet or Fast Ethernet electrical signals to light signals that can be sent over a multimode fiber cable. This is configured for 10/100Mbps copper to 100Mbps fiber and is set to IEEE 802.3 and 802.3u standards. This converter has advanced features such as auto-MDI/MDI-x, far end fault detection, and auto negotiation.

What Are the Various Types of Ethernet Cables?

Ethernet may be either a wired or wireless network. In a wired network, various types of cables are used. Here are some widely used Ethernet cables:

  • 10Base2: This is a thin twisted pair coaxial cable.
  • 10Base5: This is thick twisted pair coaxial cables.
  • 10Base T: This is a twisted pair cable which offers a speed of around 10 Mbps.
  • 100BaseTX: This is a twisted pair cable and offer a speed of 100 Mbps.
  • 100Base FX: Fiber optic protocol which offers a speed of 100 Mbps.
  • 1000Base SX: Fiber optic protocol which utilizes a wavelength of 850nm for multimode networks.
  • 1000Base LX: Fiber optic protocol which utilizes a wavelength of 1310 nm, for multimode networks and up to 1550nm for singlemode networks.

What is the Difference Between Wired Ethernet Network and Wireless Ethernet Network?

Ethernet is one of the oldest ways to connect to the Internet. You can connect Ethernet cables to wired as well as wireless networks. Here are some pointers which distinguish these two types of Ethernet networks.

  • Wired Ethernet Network: This is the most conventional wired LAN or WAN type of connectivity. An Ethernet cable is connected to a modem directly, and its other end is connected to a device such as a laptop or a desktop. This must be at least a Cat5 cable or beyond. Here, since the connectivity is direct, the speed is also much faster than wireless networks. In fact, this is a good option for single users to connect to the internet. Of course, this can be done for more than one user, such as in a small business network. You can connect around 1- to 15 devices in such a network, in an area up to 10 km. While wired Ethernet has almost become obsolete, it is actually beneficial for small groups, much faster and safer than wireless ones and can load and transfer bulky files such as videos and audios as well as live stream hem seamlessly.

  • Wireless Ethernet Network: A wireless network basically uses high frequency radio waves and does not involve cables to be connected to the receiving device such as a laptop. Hence, it is more flexible than wired networks and the device would connect if present within a given range or periphery where the modem and router are connected. This is easy to install but there may be problems related to signal strength at times, especially when transferring bulky files. Popularly known as Wi-Fi, here the data is transmitted in the form of wireless signals unlike over a cable. If there is a modem and a router, you need to connect the modem to the router with the help of an Cat5 or Cat6 ethernet cable. The virtually connected device picks up signals from the router.

What Are the Advantages of Ethernet Media Converters?

  • Ethernet media converters can be installed as standalone or rack mountable in a media converter chassis, and can be placed in cramped areas, as they are quite small and compact.
  • They can also be easily wall mounted or DIN rail mounted in industrial applications.
  • Allow a user to transmit data over distances up to 100km by using fiber optic conversion
  • They can be used to convert any IP device such as a camera to fiber optic.

For optimal use of your network and increasing your speed of communication, you can opt for a top quality Ethernet Media converter manufactured by VERSITRON. We supply Media Converters to military, government, and commercial end users world-wide. VERSITRON works closely with each customer to ensure that the most practical and cost effective solution is utilized for any specific application. Click RFQ to know the fiber media converter price from our product range. 

Related Products Table:


Product Name



10/100 Base TX to 100 Base FX Fiber Optic Media Converter, Multimode ST


10/100 Base TX to 100 Base FX Fiber Optic Media Converter, Multimode SC


10/100 Base TX to 100 Base FX Fiber Optic Media Converter, Single-mode SC


10/100Base-TX to 100Base-FX Single Fiber Media Converter


10/100/1000Base-T to 1000Base-SX/LX "Triple Duty" Gigabit Media Converter with SFP GBIC Technology


Multimode to Singlemode | Fiber Optic Media Converter


10/100/1000Base-T to 100/1000Base-X PSE Converter | Gigabit Ethernet with PoE+ Technology

Rich Tull

R.W. Tull is the President of Versitron, a prominent technology company specializing in innovative solutions for data communication and networking. With extensive experience in the industry, R.W. Tull leads the company's strategic vision and oversees its day-to-day operations.  With a deep understanding of data communication technologies and networking systems, R.W. Tull has played a pivotal role in driving Versitron's success.

Related Blogs